### **Solving Multi-step Equations**

### Must show work! No work = No Credit

|   |                                | Must show work: No work - No Credit | T        |
|---|--------------------------------|-------------------------------------|----------|
| # | Problem                        | Work                                | Solution |
| 1 | -20 = -4x - 6x                 |                                     | X=       |
| 2 | - 1-5-12- 9                    |                                     | P=       |
|   | p - 1 = 5p + 3p - 8            |                                     |          |
| 3 | 2(4x - 3) - 8 = 4 + 2x         |                                     | X=       |
| 4 | -3(4x+3) + 4(6x+1) = 43        |                                     | X=       |
| 5 | -5(1-5x) + 5(-8x-2) = -4x - 8x |                                     | X=       |

### **Solving Midpoint Formula**

The midpoint of M of the line segment from P  $_{_{\! 1}}$  (x  $_{_{\! 1}},$  y  $_{_{\! 1}})$  to P  $_{\! 2}$  (x  $_{\! 2},$  y  $_{\! 2})$ 

Must show work! No work = No Credit

$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

| # | Problem                                                                                           | Work | Solution  |
|---|---------------------------------------------------------------------------------------------------|------|-----------|
| 1 | (8, -9), (0, 5)                                                                                   |      | M = ( , ) |
| 2 | (2, -11), (-9, 0)                                                                                 |      | M = ( , ) |
| 3 | (6.6, 8.52), (-5.5, 4.07)                                                                         |      | M = ( , ) |
| 4 | $\left(\frac{5}{3}, 1\right), (0, 2)$                                                             |      | M = ( , ) |
| 5 | Given the midpoint & an endpoint, find the other endpoint  Endpoint: (-9, -1),  midpoint: (8, 14) |      | E = ( , ) |

## The Distance Formula

**Solving Distance Formula** 

For Points A( $\mathbf{x_1}$  ,  $\mathbf{y_1}$ ) and B( $\mathbf{x_2}$  ,  $\mathbf{y_2}$ )

$$AB^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

$$(x_1, y_1)$$
  $(x_2, y_2)$   
AB =  $\sqrt{(7-2)^2 + (5-8)^2}$   
AB =  $\sqrt{5^2 + (-3)^2}$ 

# or AB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

## = √34

Distance between A (2 , 8) and B (7 , 5)  $\,$ 

### Must show work! No work = No Credit

| # | Problem          | Work | Solution |
|---|------------------|------|----------|
| 1 | 4 -2 2 4 x       |      | d =      |
| 2 | -4 -2 2 4 x      |      | d =      |
| 3 | (5, 9), (-7, -7) |      | d =      |
| 4 | (3, 8), (9, 10)  |      | d =      |
| 5 | (-5, 6), (8, -4) |      | g =      |

### **Graphing Lines**

#### Must show work! No work = No Credit

| #     | Problem |
|-------|---------|
| $\pi$ |         |

Problem

y = -5



2

 $y = \frac{7}{2}x - 2$ 



3

$$y = \frac{5}{3}x$$



$$y = -\frac{1}{3}x + 3$$



Find the equation of a line that has slope 4 and passes through (5, 3) and graph it!

